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Symmetric Brownian motor

A. Gomez-Marin and J. M. Sancho
Departament d’Estructura i Constituents de la Materia, Facultat de Fisica, Universitat de Barcelona, Diagonal 647,
08028 Barcelona, Spain
(Received 27 October 2004; published 8 February 2005

In this paper, we present a model of a symmetric Brownian motor which changes the sign of its velocity
when the temperature gradient is inverted. The velocity, external work, and efficiency are studied as a function
of the temperatures of the baths and other relevant parameters. The motor shows a current reversal when
another parametdr phase shiftis varied. Analytical predictions and results from numerical simulations are
performed and agree very well. Generic properties of this type of motor are discussed.
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I. INTRODUCTION gas at different temperatures. The hotter box contains an axle

We all know that it is possible to extract some amount ofith vanes in it. The bombardments of gas molecules on the
mechanical work from a thermal bath at a temperaflye V2n€ make the axle rotate with random symmetric ﬂuctu.a—
provided we have another bath at a lower temperalyre tions. At the other end of the.ax!e there is a second box with
<T,. Thermal engines are the devices that perform this tasi ©00thed wheel which in principle can turn only one way.
All this is well known from elementary textbooks on ther- | he pawl(the stopping mechanisiis under the influence of
modynamics. We also know from statistical mechanics thagnother temperatur@ig. 2. At first glance one might think
any object in a thermal bath exhibits random energy fluctuathat it seems quite likely that the wheel will spin around one
tions of the ordekgT. These fluctuations are relatively very Way and lift a weight even when both gases are at the same
small for macroscopic objects but of very important rel- temperature, thus violating the Second Law. However, a
evance for nanometric objects such as biological motors: kicloser look at the pawl reveals that it bounces and so the
nesins, dyneins, etf1]. We are also familiar with windmills, Wheel will rotate randomly in any direction, doing a lot of
which are able to extract useful work from random winds byli9gling and with no net turning. Thus, the machine cannot
a proper adaptation to the wind direction. We can ask our€Xtract work from two baths at the same temperature.
selves if it is possible to rectify thermal fluctuations by some ~ When the temperature of the vanes is higher than the tem-
appropriate mechanical devices. perature of the wheel, Feyn_njan concludes that some _vvo_rk is

The engines which aim to get useful work by rectifying performed _W|th Carnot's efﬁugnqy \_Nhen the machme_ is Ilft—
thermal fluctuations are called Brownian motdBM). In  ing the w_(alght very sIowa._Th|s is indeed a very optimistic
fact, the paradigm of such speculations is Feynman's famou€sult which has been revised, many years later, in Refs. 4
ratchet and pawl machirf@]. During the last years, a lot of @nd 5. Indeed, there are some overlooked aspects in Feyn-
effort has been invested to study what has been called th®an's argument which can be summarized as follows: since
ratchet effect. This is a mechanism which consists in break"® engine seems to be simultaneously in contact with two
ing the spatial and temporal inversion symmetry of the sysbaths at different temperaturéthrough the rigid axlg it
tem so that directed transport emerges, often enhanced by th@nnot work in a reversible way and Carnot's efficiency will
thermal fluctuations. The ratchet mechanism can be implel€Ver be achieved. We will come back to this point later on
mented in different ways. Here we will make a modelin this paper. _ _ _
through an equation for a dynamical classical varidptesi- _ A pqssmle mathematical model of th_e dewce_of F|g. 1and
tion or anglé moving in a periodic and asymmetric potential Fig- 2 in terms of overdamped Langevin equations is
(a ratchet potentialcoupled with another degree of freedom dh
which will break thermal equilibrium. Mg = hV+ &(1), (1)

There is an enormous variety of ratchets in the literature:
pulsating ratchetgon-off, fluctuating potential, traveling po-
tentia; tilting ratchets(fluctuating force, rocking ratchets
Seebeck ratchets, Feynman ratchets, temperature ratche
frictional ratchets, quantum ratchets, collective ratchets,
mechanico-chemical ratchets, ionic bombs and pumps
etc.[3].

In this work, we will focus on a new Brownian motor
inspired by the so-called Feynman'’s ratckigig. 1). Feyn-
man stated in his famous lecturg that a very particular
device (the ratchet and pawl machineould have the effi- T o5’ T,
ciency of a Carnot engine when operating reversibly. He ide-
alized a gadgefsee Fig. 1 made up of two boxes with some FIG. 1. Feynman’s original ratchet and pawl machine.
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FIG. 3. Model for the symmetric Brownian mot(8BM).
FIG. 2. Detail of the stopping mechanism based on the interac-

tion between the ratchet and the pawl. of the velocity does. Obviously, this would imply some geo-

metrical symmetries in the engine. One example of a micro-
scopic model for a Brownian motor that suffers this change
in the sign of the current can be found in RE8]. There is

also a model for a diode rectifier that is analytically solvable

where(t) mimics thermal fluctuations and it is assumed t0[9] and that has the same main features as the SBM, namely,
be a white noise, Gaussian distributed with zero mean, saft is symmetric and it shows “reversibility.”

do
7\2& ==V + &(1), (2

isfying the fluctuation-dissipation theorem, Our “symmetric” motor is shown in Fig. 3. According to
S N this scheme, the stochastic differential equations that de-
(EOg(U)) = AeTihi AL~ 1) &y ) scribe the dynamic evolution of the system in the over-
The total potential energy is modeled by damped regime are
3 1 e de
V(6,h) = 76+ Ekhz T a0l _ 1 (4) }\ld_tl = =gV + &(V),
wherehg(6) represents the periodic but asymmetric profile of ()
the ratchet. An explicit expression will be given in the next A a6, =— 9,V + &(1)
: 2 0, 2(l).
section. dt

The potentialV has three termsr is the torque which . . . . )
gives useful work. The second term accounts for the potenl € Noise terms are again white thermal noises, Gaussian
tial energy stored in the springhe paw) with constantk, d!str_|but_ed and with zero mean, satisfying the fluctuation-
which pushes down the ratchet. Finally, the last term is &lissipation theoreni3).
very repulsive potential at short distances and nearly zero at | "€ potentiaV contains an external torquetwo ratchet-
long ones. It is used to avoid the pawl crossing through thshaped potentials, and a harmonic interaction that couples
real physical surface of the ratchet. At the same time, i°Oth degrees of freedom,
couples both degrees of freedafnand h. Other potentials
can account for the same physics in this mathematical \/(g,,6,) = 76, + Vx(6,) + Vg(- 02)+}k(01+¢— 6,).
schemd5,6]. 2

Numerical simulations show a nonzero mean velocity of (6)
the ratchet device for very high temperature differences. The
main conclusion is that, although the motor can perform usewhere the phase shift is one of the most important param-
ful work, it has an extremely small efficiency, being very far eters.
away from Carnot’s efficiency estimated by Feynman, as In Fig. 4, we see the form of the ratchet potentigl 6)
pointed out and shown in Refgl—7]. This motor presents a used in the numerical simulations. Its analytical expression is
high thermal conductivity and as a consequence has a very
low efficiency. 1

The structure of this paper is the following. In Sec. II, we
present the model for a symmetric Brownian motor and the
numerical results obtained by computer simulations of the
equations of such a device. Section Il is devoted to the
analytical approach to this model. We end in Sec. IV with
some comments and conclusions.

II. SYMMETRIC BROWNIAN MOTOR (SBM)

Feynman’s ratchet, and similar models, do not fulfill the
following inversion property:T,<—T;— v« -v. Thus our

L S . : L . .
initial motivation to propose this new model is to have a 15 35 i 1 3 35 :

motor such that, when switching the temperatures of the two 9 (rad)
baths, that is, when reversing the temperature gradient, the
mean velocity absolute value does not change while the sign FIG. 4. Shape of the ratchet potentig for d=4.
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FIG. 6. Mean velocity of the motor at the optimal regime as a
function of the external torque. The stall torquewherev=0) is
aroundr=1.2.

FIG. 5. Mean velocity versu$,/T; (7=0).

Va(6) =~ 2 9), @)

2.23 advantage of the broken inversion symmetry. Then the motor

has a zero mean velocity. The linear dependence of the ve-
G locity aroundT,/T;~1 is a clear signature that the motor
has the inversion property. We will extend this result further.
V, controls the height of the potential, is the number of In Fig. 6, we see the expected negative linear dependence of
teeth per cycle 2, and the asymmetry of the potential is the velocity versus torque until the stall force where the ve-
controlled by changing the numerical coefficients that multi-locity is zero. o _ o )
ply the sinus functions expansion of the potential. Moreover the most striking result is the velocity inversion
Notice that the ratchet potential that one varialtig sees S @ function of the phase difference paramefetve show
is the specular image of the one that the other vari&bje in Fig. 7 the mean velocity of the motor as a function of the

. . o L phase shifip in the cases of ,=2T,; and whenT,;=2T,. One
feels, as in the diode rectifier of RdB]. It is in this sense must notice that both cases are “symmetric.” This result al-
that we call our model symmetric.

lows us to extract some conclusions, namely, the existence of

To study the relevance of each parameter, we proceed Q ¢\ rrent inversion as a function ¢f the great amplification
express our system in terms of dimensionless ones. Introdugy the speed for the particular value ¢E0.4, and, finally

ing the dimensionless timgast=(\1/Vp)s, the set of Egs. that the motor is perfectly symmetric when reversing the
(5) becomes more compact. The dimensionless parametetsmperature gradient.

are nowrrl:kBTllvo, ?Z:kBTZIVO, F:k/vo, X:)\ll)\z, T These results deserve theoretical explanations that will be
=7/V,, and, of courseg, which is in radians. Notice that,  presented in Sec. Ill.

controls the energy scale, which is measuredgh,; units.
We also see, for instance, that only the fraction of the friction
coefficients is relevant.

V(6) = sin(d6) + 0.275 si2d6) + 0.0533 sifi3ds).

B. Energetics of the SBM: The efficiency

It is not enough to know whether a motor will move, nor
even how fast it will run. One would also like to know how

A. Numerical results of SBM 0.15

Preliminary numerical results indicate that the motor in-
verts its velocity when the temperature gradient is also in- 0.1 LA o =
verted(see Fig. 5. Some important thermodynamic require- I
ments are also fulfilled: there is no net motion in the limits 0.05 o
T,—T; (a unique bath k— 0 (no coupling between baths Q\ I,'A é 1
andk— oo (only one effective temperature > 0y " 7

To perform the simulations we take=1 for simplicity _
and kgT;=1. As in previous models for motors, we have |
explored the parameter domain to get the most effective val- o1k o’ \‘A\ ya
ues(larger velocitieg This situation corresponds to the pa- | : 4
rameter value¥,=2.5,k=100, andd=16. In Fig. 5 and Fig.
6, some numerical results of the mean velocity (6;) are
presented fop=0.4. We see in Fig. 5 that there is a maxi-
mum aroundT,/T;=2.5 and a minimum at,/T,=0.5. This FIG. 7. Current inversion profile(¢) when T,=2T, (circles
implies that the velocity is bounded and larger temperaturend whenT;=2T, (triangles. The angle goes from 0 to 0.52 be-
gradients do not imply larger velocities. For very laffilg  cause we are considerind=12 and therefore the periodicity is
the motor does not see the ratchet potential and cannot taker/12=0.52. The dashed lines are a guide to the eyes.

-0.15 1 | L | L 1 L | L 1
. 3 o (rad) . .
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efficiently such a machine can operate. There are many dif- 000471
ferent approaches in the literature to study energetics and, in I PN T
particular, efficiencie$6,10,13. We will follow Sekimoto’s oo D
characterization of the energetics of thermal ratchet motors %003 & %% iy
[6]. This scenario is the most suitable scheme both because it - & °°db
is intuitive and also from its potential applicability. The main = 0.002- d>° ®
idea is to find how much energy, received from an external ) & o
source, the motor will be able to employ to produce useful - °°° °q)
Oo o
Le]
oO
|

mechanical work, i.e., to lift a load. In order to compute this,

we must understand where the energy comes from, where it S

can go, and what ingredients account for that. Sekimoto o

deals with energies and not with power. When one tries to 080 T T B N %

study the problem in units of power, velocities appear explic- 025 05 075 ! 125

itly in the computations and, since they are instantaneously

not continuous because of the stochasticity of the system, FIG. 8. Efficiency» as a function of the torque The numerics

one finds that some of the terms behave extremely badly ar@f® done at the optimal regime of the SBM.

it is impossible to get a reasonable numerical convergence in

the simulations. Moreover, we have found it easier to directly To progress further, let us first note that the potential en-

compute the stochastic integrals and afterwards perform thergy U does not contribute because we have a cyclic engine.

average. In fact, V,5(=6.(t)) is periodic and bounded and thus it can be
Let us analyze the energetics of such systems. We wouldiscarded in the long time interval studied.

expect there to be some enemythat is released from the  Thus the final expression for the efficiency that has to be

bath atT, (the one at a higher temperatu@nd that is par- evaluated numerically is

tially converted into mechanical workV to lift the load.

However, according to the Second Law, some of this input

0.001-

energy must be dissipatdd into the heat bath at;. If the B 6a(ty) = 61(1)) 14
system has an intrinsic potential, there will also be a change K t (14)
in the potential energy denoted hy; So the law of the total —k f [6,(t) + ¢~ 6:(1)]d6(t)
energy conservation is f

R=D+W+U. (9)

i , } . In Fig. 8, the efficiencyn as a function of the torque is
Our interest here is to find the efficiency of the motor, yigtted. The specific values we use are around those that
which is defined, in general,_as the ratio between the workyre shown to be the optimal oneé;=3, T,=2, k=100,
extracted versus the energy input, ¢=0.4, andd=12. The plot shows a parabolic curve for the
(W) efficiency with a maximum at the middle value of the stall
7= R (10)  torque. Notice that the maximum of the efficiency is still
extremely low. Let us also underline that at the stall force
The work W is quite easy to calculate since it is just the (7=1.25), the efficiency is zero, which means that unavoid-
torque times the angle displaced. Then the work performedble heat transfer occufd]. Therefore, even whetv)—0,
during a time intervat;—t; can be obtained as there is a nonzero heat flux transferred from the hotter bath
W) = HBy(t;) - Bu(t;) = KoYt — ;). (11) tscij(t:f;]el(;:vc\)/oel?fgc?erféi'ergls is the reason why these motors have
The evaluation ofR) needs a much more careful analysis.
Following Ref.[6], we can write

ne ftf [ N(B(1), 65(0)
t 96,

Il. ANALYTICAL STUDY OF THE CURRENT INVERSION
}d‘%(t)' (12 As we have seen in the numerical results, ghparameter
. . controls a spectacular phenomenon. The SBM exhibits ve-
So by using Eq(6), we find that the energy that the bath at locity inversion when this parameter is varied. We know that

T, transfers to the mechanism in the bathrats this phenomenon exists and has been studied in the literature
tq [12]. Our purpose now is to predict analytically that this
R:J {=K[62(t) + = 02(1)] + VR(= 65(1))}dB(1). happens in our model. Any kind of exact calculation in this

t system seems impossible and, so, some approximations have

(13) to be assumed.
Consider the equations that define our Brownian motor
We have to evaluate this integral for different realizations(s) written in the form
and perform usual statistical averages. We have observed that
this quantity is always large, thus implying important losses ,
of heat. 01 = f(01) - k(01 + ¢ - 02) + él(t), (15)
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- 0.03 — . . ; . .
0, == 1(0) + k(O + d = 65) + &(1), (16) I I
where f(6) is the force exerted by the ratchet potential and 0.02
there is no torque. Let us define now the change of variables
[13]' 0.01
@
b1+ 6,
X=—, 17
> (17
-0.01
0, - 0,+ I
y: 1 2 ¢ (18) -0.02
2 L
: : , 03—Vt L1 1
The relevant variable describes the evolution of the center 0 025 05 075 1 1.25 15
of mass and the “irrelevant” variabledescribes the relative ¢ (rad)

motion of the two-particle system. Introducing a redefinition

of the noises, FIG. 9. Comparison of vs ¢ obtained from numerical simula-

tions of the model5) (circles and from the analytical expression
&u(t) + &(1) (23) (solid line). The parameters chosen ate4, k=100, V=3,

m(t) = 2 (19 andT,=2T,.
positions of the maxima are quite well determined, the inver-
&) - &(1) sion of current is clearly coincident with the simulations, and
72(t) = 2 ' (20) even the little shift neah=0 and ¢=2x/d is faithfully re-

produced. This means that in our approximations we have
and using the fact thatis very small, we can make a Taylor kept the most dominant ingredients. Note thatxtrexis goes
expansion up to first order, getting the pair of equations  from 0 to 1.57 because we have imposkd4(27w/4=1.57
o in order to safely use the analytical expressions derived in
X=FO)+yGX) + (), 21 the Appendix. However, fod=12 the computation oB pre-
. dicts qualitatively the current inversion too.
y = Q00 +y(R(X) = 2K) + 75(t). (22) Now we will give an intuitive explanation of why the
The explicit expressions for these quantities and furthemotor runs either forward or backward, depending on the
mathematical details are in the Appendix. Summarizing, wevalue of the parametety. The original problem can be
have found that the mean angular velocitycan be ex- Mapped into a multiplicative noise scenafgee the Appen-
pressed in the standard fofh2,14,15 dix for detailg well documented in the literatuf¢2,16—18.
Then we can straightforwardly identify in our case the effec-
tive potentialVqi(x) [Eq. (A14)], which does not need to be
asymmetric anymore, and the effective modulatigyp(x)
[Eq. (A13)], which is responsible for the breaking of the
symmetries that allow a nonzero mean velocity in the motor.
What is more, by plotting them we can very intuitively see
whether and why there is a forward or backward flux

vg= %TN(l -e%), (23

whereN is a kind of normalization constant that does not
depend very much on the parame#erThe relevant quantity
B, which is a function of¢, is given by

QX G(x) [16-18.
L —-F(x) - ok In Fig. 10, we plot, for three significative phase shifts, the
,8¢:f dx . noise coupling functiorge¢(x) and the effective potential
o 1 T, T,\ G(x) 5 Vet(X). A careful look at each of them easily reveals the
Z[l * T, * (1 - _1)_ +O(1k )} current sign in a very intuitive way. The key point is the fact

(24) that wheng(x) is large, the noise effects are amplified on
one side of the hill of the periodic potential and, then, the net
This expression can be numerically evaluated using the exsurrent will go in that direction. Then, it is much clearer that
pressions for the different functions that appear in it. Thedepending on the position @f(x) with respect toVe(X)
value of the parametéd has been estimated by using only the current will go forwards, backwards, or, in the symmetric
one numerical value of the velocity obtained by the simula-case, it will cancel. Thus, this simple scheme explains the
tion (the minimum value a$=0.25. If 8 changes its sign as qualitative behavior of the current inversion.
a function of¢, then the inversion phenomenon is predicted. Two more comments should be made. Just for the sake of
In Fig. 9, we compare the predicted theoretical depen€onsistency, we have checked two basic conditions that must
dence of the velocity as a function of the phageio the always hold on these kinds of motors. The first one concerns
values obtained by numerical simulations of the model. Théemperatures; if we séf;=T,, the integralg,, vanishes be-
analytical result, considering the amount of approximationcause the denominator becomes constant and, therefore, the
involved, traces very accurately the current inversion pheaverage velocity is zero. The second test is also related with
nomenon. The fit is very encouraging and enlightening. Thehe first one. When we maketend to infinity (this implies a
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' ' specific properties have been studied. This motor has a rel-
evant external parametéa phasg which induces the phe-
nomenon of current inversion. We have performed an ana-
lytical calculation with appropriate approximations to get an
expression for the mean velocity in terms of the relevant
parameters of the model. This formal prediction fits very
well with the data from the numerical simulations of the
SBM model.

An important conclusion is that, even though the symmet-
ric motor has a larger efficiency than other mechanical
Brownian motors, the efficiency of such devices is very
small. Regardless of the particular properties of these kinds
10 ' 3 ' 0 ' 3 ' 10 of heat engines, they are anyhow unrealistic models for mo-
(@) x (rad) lecular motors since it is known that these biological systems
do transform chemical energy into work, without the inter-
mediate state of burning fuel. Consequently, one cannot think
of these models as realistic ones for biological molecular
motors.

Moreover, the mechanical coupling mechanism between
both baths acts as a very good heat conductor even in situa-
tions of very small mean velocity. Therefore, the efficiency is
only a small fraction of that of Carnot. This is in fact a
general feature of heat Brownian motors due to the fact that
in order to rectify thermal fluctuations, these systems must
be put in contact and a lot of heat is interchanged. The diode
rectifier of Ref.[9] does not present this problem and accord-
ingly it can arrive near the Carnot efficiency in some limits.

’ geff

Veff

’ geff

Veff
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APPENDIX: ANALYTICAL APPROACH

Our starting point is the pair of coupled equatioi2d)
and(22) where the different functions are

a0 5o 5 o _ o
@ o F(x) = f(x— @l2) - f(x+ ¢/2) ’ (A1)
FIG. 10. Plots of the shape of the effective multiplicative noise
Jerf(X) (A13) (dashed lingand the effective potentidde(x) (A14) f'(x— $l2) + £ (x+ ¢I2)
(solid line) in arbitrary scales. The phase shifts &f@m top to G(x) = , (A2)
bottom ¢=0.25,¢$=0.785, andp=1.375, which correspond to the 2
fastest negative, zero, and fastest positive velocities respectively, for
d=4. Arrows indicate the velocity direction. f(x—l2) + f(Xx+ ¢pl2)
Q) = > : (A3)
rigid coupling and then only one effective temperajuthe
dependence or of the multiplicative noise disappears again f/(x— ¢I2) — f' (X + pl2)
(only additive noise is presenand, then, the motor cannot R(x) = 2 : (A4)

move anywhere on average.
Since the variabley has a faster dynamics, we will first
IV. COMMENTS AND CONCLUSIONS eliminate adiabatically Eq22), and we will also discard the

We have presented and studied a symmetric BrowniafunctionR(x) because the parameteis very large. Then Eq.
motor. Its efficiency has been numerically obtained and othet22) reduces to
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(A5) Qeri() = kg TaGf(X) + kaToG500,  (AL3)

1 1
y=oom(t) + E(Q(X)'
andH(x) can be related to an effective potential,

2k

Substituting now this expression in E1), we get a x
Langevin equation with two multiplicative noises, Vesf(X) = _f H(x')dx'. (A14)
X=H(X) + g1(X)&1(1) + go(X) &(1), A6 .
00+ G1(0£1(1) + 620 £(1) (A6) Then we have to solve EGA12) in the steady state for a
where the new functions are constant fluxJ with periodic conditions. The first step is to
reduce this equation to a Bernoulli form which can be for-
H(x) = F(x) + iQ(x)G(x), (A7) mally integrated. By imposing periodic boundary conditions,
2k P(x)=P(x+L) (whereL=27/d), we get
1/ GX) o) = 3 [ g &
X Po(1 - =J| dx , Al5
o =1(1+S2), (18) ai-e=of el v

where Py is a constant that can be found by using the nor-
1 G(x) malization conditionf5P(x)dx=1, andg is a relevant func-
gz(X)ZE(l‘_)- (A9) 0 p

2k tion whose expression is
. _ . . X _ H X!
Let us write now the Fokker-Planck equation associated 8%) :f dx x) . (AL6)
to Eq. (AB), 0o Gix)+(TJ/Tgs(x)

AP(x,1) = = 3 J(x.1), (A10)  where we takekgT;=1. Then the mean velocity = (x)

where z(@ (since(éﬁz(@) is found to be proportional to
(1-ef). What is left to do is to find the3 integral for

J(Xat) = H(X) P(Xut) - KBTl[gl(X)axgl(X) P(Xat)] every ¢
= KgTo[82(X) dg2(X)P(X,1)]. (A11) To simplify the calculation of the integral, we now make

i ) . ) o an expansion in powers of &/ Since the value ok that

ability current above can be rewritten as suppose that the terms of the ord&rk)? and so on will not

Jx,t) = HXP(x.t) - P P(x.t)], (A12 notably contribute to the integral fa<<5. Then, the integral
(X8 = HOIPOGY =~ [Ger(X) geri®IP( D], - (AL2) (A16) turns out to be Eq(24), which is evaluated numeri-

where cally.
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