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In this paper, we present a model of a symmetric Brownian motor which changes the sign of its velocity
when the temperature gradient is inverted. The velocity, external work, and efficiency are studied as a function
of the temperatures of the baths and other relevant parameters. The motor shows a current reversal when
another parametersa phase shiftd is varied. Analytical predictions and results from numerical simulations are
performed and agree very well. Generic properties of this type of motor are discussed.
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I. INTRODUCTION

We all know that it is possible to extract some amount of
mechanical work from a thermal bath at a temperatureT2
provided we have another bath at a lower temperatureT1
,T2. Thermal engines are the devices that perform this task.
All this is well known from elementary textbooks on ther-
modynamics. We also know from statistical mechanics that
any object in a thermal bath exhibits random energy fluctua-
tions of the orderkBT. These fluctuations are relatively very
small for macroscopic objects but of very important rel-
evance for nanometric objects such as biological motors: ki-
nesins, dyneins, etc.f1g. We are also familiar with windmills,
which are able to extract useful work from random winds by
a proper adaptation to the wind direction. We can ask our-
selves if it is possible to rectify thermal fluctuations by some
appropriate mechanical devices.

The engines which aim to get useful work by rectifying
thermal fluctuations are called Brownian motorssBMd. In
fact, the paradigm of such speculations is Feynman’s famous
ratchet and pawl machinef2g. During the last years, a lot of
effort has been invested to study what has been called the
ratchet effect. This is a mechanism which consists in break-
ing the spatial and temporal inversion symmetry of the sys-
tem so that directed transport emerges, often enhanced by the
thermal fluctuations. The ratchet mechanism can be imple-
mented in different ways. Here we will make a model
through an equation for a dynamical classical variablesposi-
tion or angled moving in a periodic and asymmetric potential
sa ratchet potentiald coupled with another degree of freedom
which will break thermal equilibrium.

There is an enormous variety of ratchets in the literature:
pulsating ratchetsson-off, fluctuating potential, traveling po-
tentiald; tilting ratchetssfluctuating force, rocking ratchetsd,
Seebeck ratchets, Feynman ratchets, temperature ratchets,
frictional ratchets, quantum ratchets, collective ratchets,
mechanico-chemical ratchets, ionic bombs and pumps,
etc. f3g.

In this work, we will focus on a new Brownian motor
inspired by the so-called Feynman’s ratchetsFig. 1d. Feyn-
man stated in his famous lecturesf2g that a very particular
device sthe ratchet and pawl machined could have the effi-
ciency of a Carnot engine when operating reversibly. He ide-
alized a gadgetssee Fig. 1d made up of two boxes with some

gas at different temperatures. The hotter box contains an axle
with vanes in it. The bombardments of gas molecules on the
vane make the axle rotate with random symmetric fluctua-
tions. At the other end of the axle there is a second box with
a toothed wheel which in principle can turn only one way.
The pawlsthe stopping mechanismd is under the influence of
another temperaturesFig. 2d. At first glance one might think
that it seems quite likely that the wheel will spin around one
way and lift a weight even when both gases are at the same
temperature, thus violating the Second Law. However, a
closer look at the pawl reveals that it bounces and so the
wheel will rotate randomly in any direction, doing a lot of
jiggling and with no net turning. Thus, the machine cannot
extract work from two baths at the same temperature.

When the temperature of the vanes is higher than the tem-
perature of the wheel, Feynman concludes that some work is
performed with Carnot’s efficiency when the machine is lift-
ing the weight very slowly. This is indeed a very optimistic
result which has been revised, many years later, in Refs. 4
and 5. Indeed, there are some overlooked aspects in Feyn-
man’s argument which can be summarized as follows: since
the engine seems to be simultaneously in contact with two
baths at different temperaturessthrough the rigid axled, it
cannot work in a reversible way and Carnot’s efficiency will
never be achieved. We will come back to this point later on
in this paper.

A possible mathematical model of the device of Fig. 1 and
Fig. 2 in terms of overdamped Langevin equations is

l1
dh

dt
= − ]hV + j1std, s1d

FIG. 1. Feynman’s original ratchet and pawl machine.
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l2
du

dt
= − ]uV + j2std, s2d

wherejistd mimics thermal fluctuations and it is assumed to
be a white noise, Gaussian distributed with zero mean, sat-
isfying the fluctuation-dissipation theorem,

kjistdj jst8dl = 2kBTilidst − t8ddi j . s3d

The total potential energy is modeled by

Vsu,hd = tu +
1

2
kh2 +

e

euh−hRsudu/l0 − 1
, s4d

wherehRsud represents the periodic but asymmetric profile of
the ratchet. An explicit expression will be given in the next
section.

The potentialV has three terms.t is the torque which
gives useful work. The second term accounts for the poten-
tial energy stored in the springsthe pawld with constantk,
which pushes down the ratchet. Finally, the last term is a
very repulsive potential at short distances and nearly zero at
long ones. It is used to avoid the pawl crossing through the
real physical surface of the ratchet. At the same time, it
couples both degrees of freedomu and h. Other potentials
can account for the same physics in this mathematical
schemef5,6g.

Numerical simulations show a nonzero mean velocity of
the ratchet device for very high temperature differences. The
main conclusion is that, although the motor can perform use-
ful work, it has an extremely small efficiency, being very far
away from Carnot’s efficiency estimated by Feynman, as
pointed out and shown in Refs.f4–7g. This motor presents a
high thermal conductivity and as a consequence has a very
low efficiency.

The structure of this paper is the following. In Sec. II, we
present the model for a symmetric Brownian motor and the
numerical results obtained by computer simulations of the
equations of such a device. Section III is devoted to the
analytical approach to this model. We end in Sec. IV with
some comments and conclusions.

II. SYMMETRIC BROWNIAN MOTOR (SBM)

Feynman’s ratchet, and similar models, do not fulfill the
following inversion property:T2↔T1→v↔−v. Thus our
initial motivation to propose this new model is to have a
motor such that, when switching the temperatures of the two
baths, that is, when reversing the temperature gradient, the
mean velocity absolute value does not change while the sign

of the velocity does. Obviously, this would imply some geo-
metrical symmetries in the engine. One example of a micro-
scopic model for a Brownian motor that suffers this change
in the sign of the current can be found in Ref.f8g. There is
also a model for a diode rectifier that is analytically solvable
f9g and that has the same main features as the SBM, namely,
it is symmetric and it shows “reversibility.”

Our “symmetric” motor is shown in Fig. 3. According to
this scheme, the stochastic differential equations that de-
scribe the dynamic evolution of the system in the over-
damped regime are

l1
du1

dt
= − ]u1

V + j1std,

s5d

l2
du2

dt
= − ]u2

V + j2std.

The noise terms are again white thermal noises, Gaussian
distributed and with zero mean, satisfying the fluctuation-
dissipation theorems3d.

The potentialV contains an external torquet, two ratchet-
shaped potentials, and a harmonic interaction that couples
both degrees of freedom,

Vsu1,u2d = tu1 + VRsu1d + VRs− u2d +
1

2
ksu1 + f − u2d2.

s6d

where the phase shiftf is one of the most important param-
eters.

In Fig. 4, we see the form of the ratchet potentialVRsud
used in the numerical simulations. Its analytical expression is

FIG. 2. Detail of the stopping mechanism based on the interac-
tion between the ratchet and the pawl.

FIG. 3. Model for the symmetric Brownian motorsSBMd.

FIG. 4. Shape of the ratchet potentialVR for d=4.
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VRsud = −
V0

2.23
Vsud, s7d

Vsud = sinsdud + 0.275 sins2dud + 0.0533 sins3dud. s8d

V0 controls the height of the potential,d is the number of
teeth per cycle 2p, and the asymmetry of the potential is
controlled by changing the numerical coefficients that multi-
ply the sinus functions expansion of the potential.

Notice that the ratchet potential that one variablesu1d sees
is the specular image of the one that the other variablesu2d
feels, as in the diode rectifier of Ref.f9g. It is in this sense
that we call our model symmetric.

To study the relevance of each parameter, we proceed to
express our system in terms of dimensionless ones. Introduc-
ing the dimensionless times as t=sl1/V0ds, the set of Eqs.
s5d becomes more compact. The dimensionless parameters

are now T̃1=kBT1/V0, T̃2=kBT2/V0, k̃=k/V0, l̃=l1/l2, t̃
=t /V0, and, of course,f, which is in radians. Notice thatV0
controls the energy scale, which is measured inkBT1 units.
We also see, for instance, that only the fraction of the friction
coefficients is relevant.

A. Numerical results of SBM

Preliminary numerical results indicate that the motor in-
verts its velocity when the temperature gradient is also in-
vertedssee Fig. 5d. Some important thermodynamic require-
ments are also fulfilled: there is no net motion in the limits
T2→T1 sa unique bathd, k→0 sno coupling between bathsd,
andk→` sonly one effective temperatured.

To perform the simulations we takel̃=1 for simplicity
and kBT1=1. As in previous models for motors, we have
explored the parameter domain to get the most effective val-
uesslarger velocitiesd. This situation corresponds to the pa-
rameter valuesV0=2.5,k=100, andd=16. In Fig. 5 and Fig.

6, some numerical results of the mean velocityv8 ku̇1l are
presented forf=0.4. We see in Fig. 5 that there is a maxi-
mum aroundT2/T1=2.5 and a minimum atT2/T1=0.5. This
implies that the velocity is bounded and larger temperature
gradients do not imply larger velocities. For very largeT2,
the motor does not see the ratchet potential and cannot take

advantage of the broken inversion symmetry. Then the motor
has a zero mean velocity. The linear dependence of the ve-
locity aroundT2/T1,1 is a clear signature that the motor
has the inversion property. We will extend this result further.
In Fig. 6, we see the expected negative linear dependence of
the velocity versus torque until the stall force where the ve-
locity is zero.

Moreover the most striking result is the velocity inversion
as a function of the phase difference parameterf. We show
in Fig. 7 the mean velocity of the motor as a function of the
phase shiftf in the cases ofT2=2T1 and whenT1=2T2. One
must notice that both cases are “symmetric.” This result al-
lows us to extract some conclusions, namely, the existence of
a current inversion as a function off, the great amplification
of the speed for the particular value off=0.4, and, finally,
that the motor is perfectly symmetric when reversing the
temperature gradient.

These results deserve theoretical explanations that will be
presented in Sec. III.

B. Energetics of the SBM: The efficiency

It is not enough to know whether a motor will move, nor
even how fast it will run. One would also like to know how

FIG. 5. Mean velocity versusT2/T1 st=0d. FIG. 6. Mean velocity of the motor at the optimal regime as a
function of the external torquet. The stall torqueswherev=0d is
aroundt=1.2.

FIG. 7. Current inversion profilevsfd when T2=2T1 scirclesd
and whenT1=2T2 strianglesd. The angle goes from 0 to 0.52 be-
cause we are consideringd=12 and therefore the periodicity is
2p /12=0.52. The dashed lines are a guide to the eyes.
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efficiently such a machine can operate. There are many dif-
ferent approaches in the literature to study energetics and, in
particular, efficienciesf6,10,11g. We will follow Sekimoto’s
characterization of the energetics of thermal ratchet motors
f6g. This scenario is the most suitable scheme both because it
is intuitive and also from its potential applicability. The main
idea is to find how much energy, received from an external
source, the motor will be able to employ to produce useful
mechanical work, i.e., to lift a load. In order to compute this,
we must understand where the energy comes from, where it
can go, and what ingredients account for that. Sekimoto
deals with energies and not with power. When one tries to
study the problem in units of power, velocities appear explic-
itly in the computations and, since they are instantaneously
not continuous because of the stochasticity of the system,
one finds that some of the terms behave extremely badly and
it is impossible to get a reasonable numerical convergence in
the simulations. Moreover, we have found it easier to directly
compute the stochastic integrals and afterwards perform the
average.

Let us analyze the energetics of such systems. We would
expect there to be some energyR that is released from the
bath atT2 sthe one at a higher temperatured and that is par-
tially converted into mechanical workW to lift the load.
However, according to the Second Law, some of this input
energy must be dissipatedD into the heat bath atT1. If the
system has an intrinsic potential, there will also be a change
in the potential energy denoted byU. So the law of the total
energy conservation is

R= D + W+ U. s9d

Our interest here is to find the efficiency of the motor,
which is defined, in general, as the ratio between the work
extracted versus the energy input,

h =
kWl
kRl

. s10d

The work W is quite easy to calculate since it is just the
torque times the angle displaced. Then the work performed
during a time intervaltf − ti can be obtained as

kWl = tku1stfd − u1stidl = tkvlstf − tid. s11d

The evaluation ofkRl needs a much more careful analysis.
Following Ref.f6g, we can write

R=E
ti

tf F ]V„u1std,u2std…
]u2

Gdu2std. s12d

So by using Eq.s6d, we find that the energy that the bath at
T2 transfers to the mechanism in the bath atT1 is

R=E
ti

tf

h− kfu1std + f − u2stdg + VR8„− u2std…jdu2std.

s13d

We have to evaluate this integral for different realizations
and perform usual statistical averages. We have observed that
this quantity is always large, thus implying important losses
of heat.

To progress further, let us first note that the potential en-
ergyU does not contribute because we have a cyclic engine.
In fact,V28(−u2std) is periodic and bounded and thus it can be
discarded in the long time interval studied.

Thus the final expression for the efficiency that has to be
evaluated numerically is

h =
tku1stfd − u1stidl

− kKE
ti

tf

fu1std + f − u2stdgdu2stdL . s14d

In Fig. 8, the efficiencyh as a function of the torquet is
plotted. The specific values we use are around those that
were shown to be the optimal ones;V0=3, T2=2, k=100,
f=0.4, andd=12. The plot shows a parabolic curve for the
efficiency with a maximum at the middle value of the stall
torque. Notice that the maximum of the efficiency is still
extremely low. Let us also underline that at the stall force
st.1.25d, the efficiency is zero, which means that unavoid-
able heat transfer occursf4g. Therefore, even whenkvl→0,
there is a nonzero heat flux transferred from the hotter bath
to the cooler one. This is the reason why these motors have
such low efficiencies.

III. ANALYTICAL STUDY OF THE CURRENT INVERSION

As we have seen in the numerical results, thef parameter
controls a spectacular phenomenon. The SBM exhibits ve-
locity inversion when this parameter is varied. We know that
this phenomenon exists and has been studied in the literature
f12g. Our purpose now is to predict analytically that this
happens in our model. Any kind of exact calculation in this
system seems impossible and, so, some approximations have
to be assumed.

Consider the equations that define our Brownian motor
s5d written in the form

u̇1 = fsu1d − ksu1 + f − u2d + j1std, s15d

FIG. 8. Efficiencyh as a function of the torquet. The numerics
are done at the optimal regime of the SBM.
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u̇2 = − fsu2d + ksu1 + f − u2d + j2std, s16d

where fsud is the force exerted by the ratchet potential and
there is no torque. Let us define now the change of variables
f13g,

x =
u1 + u2

2
, s17d

y =
u1 − u2 + f

2
. s18d

The relevant variablex describes the evolution of the center
of mass and the “irrelevant” variabley describes the relative
motion of the two-particle system. Introducing a redefinition
of the noises,

h1std =
j1std + j2std

2
, s19d

h2std =
j1std − j2std

2
, s20d

and using the fact thaty is very small, we can make a Taylor
expansion up to first order, getting the pair of equations

ẋ = Fsxd + yGsxd + h1std, s21d

ẏ = Qsxd + ysRsxd − 2kd + h2std. s22d

The explicit expressions for these quantities and further
mathematical details are in the Appendix. Summarizing, we
have found that the mean angular velocityv can be ex-
pressed in the standard formf12,14,15g

vf =
2p

d
Ns1 − ebfd , s23d

where N is a kind of normalization constant that does not
depend very much on the parameterf. The relevant quantity
b, which is a function off, is given by

bf =E
0

L

dx

− Fsxd −
QsxdGsxd

2k

1

4
F1 +

T2

T1
+ S1 −

T2

T1
DGsxd

k
+ Os1/k2dG

.

s24d

This expression can be numerically evaluated using the ex-
pressions for the different functions that appear in it. The
value of the parameterN has been estimated by using only
one numerical value of the velocity obtained by the simula-
tion sthe minimum value atf=0.25d. If b changes its sign as
a function off, then the inversion phenomenon is predicted.

In Fig. 9, we compare the predicted theoretical depen-
dence of the velocity as a function of the phasef to the
values obtained by numerical simulations of the model. The
analytical result, considering the amount of approximations
involved, traces very accurately the current inversion phe-
nomenon. The fit is very encouraging and enlightening. The

positions of the maxima are quite well determined, the inver-
sion of current is clearly coincident with the simulations, and
even the little shift nearf=0 andf=2p /d is faithfully re-
produced. This means that in our approximations we have
kept the most dominant ingredients. Note that thex axis goes
from 0 to 1.57 because we have imposedd=4s2p /4=1.57d
in order to safely use the analytical expressions derived in
the Appendix. However, ford=12 the computation ofb pre-
dicts qualitatively the current inversion too.

Now we will give an intuitive explanation of why the
motor runs either forward or backward, depending on the
value of the parameterf. The original problem can be
mapped into a multiplicative noise scenariossee the Appen-
dix for detailsd well documented in the literaturef12,16–18g.
Then we can straightforwardly identify in our case the effec-
tive potentialVef fsxd fEq. sA14dg, which does not need to be
asymmetric anymore, and the effective modulationgef fsxd
fEq. sA13dg, which is responsible for the breaking of the
symmetries that allow a nonzero mean velocity in the motor.
What is more, by plotting them we can very intuitively see
whether and why there is a forward or backward flux
f16–18g.

In Fig. 10, we plot, for three significative phase shifts, the
noise coupling functiongef fsxd and the effective potential
Vef fsxd. A careful look at each of them easily reveals the
current sign in a very intuitive way. The key point is the fact
that whengef fsxd is large, the noise effects are amplified on
one side of the hill of the periodic potential and, then, the net
current will go in that direction. Then, it is much clearer that
depending on the position ofgef fsxd with respect toVef fsxd
the current will go forwards, backwards, or, in the symmetric
case, it will cancel. Thus, this simple scheme explains the
qualitative behavior of the current inversion.

Two more comments should be made. Just for the sake of
consistency, we have checked two basic conditions that must
always hold on these kinds of motors. The first one concerns
temperatures; if we setT1=T2, the integralbf vanishes be-
cause the denominator becomes constant and, therefore, the
average velocity is zero. The second test is also related with
the first one. When we makek tend to infinitysthis implies a

FIG. 9. Comparison ofv vs f obtained from numerical simula-
tions of the models5d scirclesd and from the analytical expression
s23d ssolid lined. The parameters chosen ared=4, k=100, V0=3,
andT2=2T1.
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rigid coupling and then only one effective temperatured, the
dependence onx of the multiplicative noise disappears again
sonly additive noise is presentd and, then, the motor cannot
move anywhere on average.

IV. COMMENTS AND CONCLUSIONS

We have presented and studied a symmetric Brownian
motor. Its efficiency has been numerically obtained and other

specific properties have been studied. This motor has a rel-
evant external parametersa phased which induces the phe-
nomenon of current inversion. We have performed an ana-
lytical calculation with appropriate approximations to get an
expression for the mean velocity in terms of the relevant
parameters of the model. This formal prediction fits very
well with the data from the numerical simulations of the
SBM model.

An important conclusion is that, even though the symmet-
ric motor has a larger efficiency than other mechanical
Brownian motors, the efficiency of such devices is very
small. Regardless of the particular properties of these kinds
of heat engines, they are anyhow unrealistic models for mo-
lecular motors since it is known that these biological systems
do transform chemical energy into work, without the inter-
mediate state of burning fuel. Consequently, one cannot think
of these models as realistic ones for biological molecular
motors.

Moreover, the mechanical coupling mechanism between
both baths acts as a very good heat conductor even in situa-
tions of very small mean velocity. Therefore, the efficiency is
only a small fraction of that of Carnot. This is in fact a
general feature of heat Brownian motors due to the fact that
in order to rectify thermal fluctuations, these systems must
be put in contact and a lot of heat is interchanged. The diode
rectifier of Ref.f9g does not present this problem and accord-
ingly it can arrive near the Carnot efficiency in some limits.
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APPENDIX: ANALYTICAL APPROACH

Our starting point is the pair of coupled equationss21d
and s22d where the different functions are

Fsxd =
fsx − f/2d − fsx + f/2d

2
, sA1d

Gsxd =
f8sx − f/2d + f8sx + f/2d

2
, sA2d

Qsxd =
fsx − f/2d + fsx + f/2d

2
, sA3d

Rsxd =
f8sx − f/2d − f8sx + f/2d

2
. sA4d

Since the variabley has a faster dynamics, we will first
eliminate adiabatically Eq.s22d, and we will also discard the
functionRsxd because the parameterk is very large. Then Eq.
s22d reduces to

FIG. 10. Plots of the shape of the effective multiplicative noise
gef fsxd sA13d sdashed lined and the effective potentialVef fsxd sA14d
ssolid lined in arbitrary scales. The phase shifts aresfrom top to
bottomd f=0.25,f=0.785, andf=1.375, which correspond to the
fastest negative, zero, and fastest positive velocities respectively, for
d=4. Arrows indicate the velocity direction.

A. GOMEZ-MARIN AND J. M. SANCHO PHYSICAL REVIEW E71, 021101s2005d

021101-6



y =
1

2k
h2std +

1

2k
Qsxd. sA5d

Substituting now this expression in Eq.s21d, we get a
Langevin equation with two multiplicative noises,

ẋ = Hsxd + g1sxdj1std + g2sxdj2std, sA6d

where the new functions are

Hsxd = Fsxd +
1

2k
QsxdGsxd, sA7d

g1sxd =
1

2
S1 +

Gsxd
2k

D , sA8d

g2sxd =
1

2
S1 −

Gsxd
2k

D . sA9d

Let us write now the Fokker-Planck equation associated
to Eq. sA6d,

]tPsx,td = − ]xJsx,td, sA10d

where

Jsx,td = HsxdPsx,td − KBT1fg1sxd]xg1sxdPsx,tdg

− KBT2fg2sxd]xg2sxdPsx,tdg. sA11d

After some manipulations with partial derivatives, the prob-
ability current above can be rewritten as

Jsx,td = HsxdPsx,td − fgef fsxd]xgef fsxdPsx,tdg, sA12d

where

gef fsxd = ÎkBT1g1
2sxd + kBT2g2

2sxd, sA13d

andHsxd can be related to an effective potential,

Vef fsxd = −Ex

Hsx8ddx8. sA14d

Then we have to solve Eq.sA12d in the steady state for a
constant fluxJ with periodic conditions. The first step is to
reduce this equation to a Bernoulli form which can be for-
mally integrated. By imposing periodic boundary conditions,
Psxd=Psx+Ld swhereL=2p /dd, we get

P0s1 − ebsLdd = JE
0

L

dx
e−bsxd

gef fsxd
, sA15d

whereP0 is a constant that can be found by using the nor-
malization conditione0

LPsxddx=1, andb is a relevant func-
tion whose expression is

bsxd =E
0

x

dx8
− Hsx8d

g1
2sx8d + sT2/T1dg2

2sx8d
, sA16d

where we takekBT1=1. Then the mean velocityv8 kẋl
.ku̇1l ssince ku̇1l.ku̇2ld is found to be proportional to
s1−ebsLdd. What is left to do is to find theb integral for
everyf.

To simplify the calculation of the integral, we now make
an expansion in powers of 1/k. Since the value ofk that
makes the motor run faster is aroundk=100, one can safely
suppose that the terms of the orders1/kd2 and so on will not
notably contribute to the integral ford,5. Then, the integral
sA16d turns out to be Eq.s24d, which is evaluated numeri-
cally.
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